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FOREWORD

This report was prepared by the Engineering Analysis Division of
Computer Engineering Assoclates, Pasadena, California, on Air Force
contract AF 33(657)=8293, under Task Number 821901, Project Number 8219,
The work was administered by the Stability and Control Section, Control
Criteria Branch, Flight Control Division of the Air Force Flight Dynamics

Laboratory, Mr, Robert L. Swaim was project engineer for the Laboratory,

Work under the contract began in March 1962, and was concluded in
Augugt of 1963. Most of the research was ¢arried out by Robert G.
Schwendler and Jack H, Hill, and valuable contributions were made by

Dr, Richard H, MacNeal, who also directed the early phases of the research
activity,

This is the final report and concludes work on contract AF 33(657)=
8293,
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ABSTRACT

This report contains an investigation of "mode interaction" instabilities
of aircraft, "Mode interaction" refers to coupling between an elastic mode
and a rigid body mode of the free system, Three ratier general airframe
configurations ars analyzed in detail, It 1is shown that systems which tend
toward steady atate divergence are particularly susceptible to mode inter=
action, Also, that serodyunamic damping terms can have a destabilizing
effect upon a free system, The analyses show that aercelastlc systema which
possess no finite frequency elastic mode can be susceptible to a finite
frequency instability. Computer studies of several different airframe
configurations are discussed. An appendix to the report contains stability

charts for an aircraft having two rigid body modes and one elastic mode.
PUBLIC.TION REVISY

This technical documentary report has been reviewed and is approved.
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I. INTRODUCTION

The Investigation of reference |, titled "Optiwum Structursl
Representation in Aeroejastic Analyses" was (nitlated as a study of
the effects of elastic modes of an aeroelastic system on the low
frequency response of the system, The results of that investigation
provided a straight forwerd method of representing a system in terms
of a few of It3 normal coordinates and the “residual flexibliity® of
all higher modes which proved to be an accurste approximation of the
aeroelastic systex for the prediction of !ts dynamic behavior in the
frequency band from zero through the frequencies of the norms! modes

explicitly Included in the representation,

This method of structural representation was shown to be valld
In all conflgurations studied except In the case of "mode Interaction”
whers no conclusions were drawn, "Mode Interaction" is defined as a
conditlon of potential or inciplant asroelastic instabiility Invalving

one elastic mode and one riglid body mode of the free systew,

The Investigation reported here was undertaken to provide some
insight into the mechanism of "mode interaction™ and to provide a
means of predicting tha susceptibiiity of a given configuration to
this phenomenon, Since the ™aode interaction™ phenomenon Is definable
In terms of a potentlal seroelastic instabliity, this study was almed
particulariy at the prediction and understanding of the instability

rather than at prediction of the ragponse at a subcritical speed.

Manuscript relessed by authors August 1963 for publication as an
ASD Technical Documentary Report.




The predictlon of critical velocity (flutter speed) and the system
response at a subcritical speed Is caertalnly a solvable problem for any
system, Many standard references on flutter analysis and aeroelasticlty
present general methods which are comprehensive In their potential
appiication. Reference | presents equations of motion of an seroelastic
system which are an example of a completely comprehensive analysls,

Equation (3,69) of reference | Is

d {6 = [3ad (0] = Lo D) ( o [0 {8347 o0

where ;

[YK Is a dlagonal matrix of the generalized mass and stiffness
of the normal modes, [YK] - [KK] - (u2 [mK] .

{ék} Is the vector of normal coordinate deflections.

[@md Is the matrix of normal mode shepes or the "modal matrix"
of physical coordinates m. [QmK] Is a square matrix.

[anJ is the serodynamic Influence coefflcient matrix In the
physical coordinates m, deflined by {Fm}- [Qmm] {Vm} .

[)g:;:] ie the residual flexibility matrix or a matrix defining
the stiffness propertlies of the system which are not
Included In the generallzed stiffnesses [KK] .

{Fm(a)} Is a vector of additional externally applled forces.

Equation (I-1) can provide a rigorous statement of the equations of
moticn of a system [f all elestic modes of the system are included In
the K coordinates and at least an excellent approximation of the system
equations when the K coordinates include a reasonable numbsr of the

lowest modes of the system,

-y




Equation (I~1) 1s useful In providing an accurate prediction of
the dynamic response of a complicated systems Such predictions, how-
ever, do not elways glve an understanding of the basic mechanism of
the phenomena being studied., Thus, such an equation can provide means
of discovering that a given alrcraft design has unsatisfactory stabl|-
ity and control characteristics, but unless the basic mechanism of the
Instabl ity is understood by the designer, he will be unable tc foresee
which design changes result in improvement., The systems analysed in
this study were selected so as to throw llght on the basic mechanisms
of mode Interactions In order to lllustrate these mechanisms cleariy,
It was often found useful to make simplifylng assumptions. Therefore
the results of this study spply to more definite stabllity and control

problems than does equation (I-{), which is very general,

Three analyses are made In this study. These analyses conslder

the followlng systems:

I« (Section II) Analysis of an alrframe represented by two rigid
body modes, one elastic mode, and the "residual flexibility"
of all hiyher modes. The chief simplifying assumption of this
analysis is the omission of all damping terms from the equa-
tions of motion of the system,

2, (Section III) Analysis of an alrframe consisting of a simple
ajrfoll flexibly attached to a rigid fuselage. In addltion to
the assumption that the fuselage is rigld, It is also assumed
that the alrfoll has no mass.

3, (Section IV) Analysis of an alrframe having two rigid body modes

and one elastic mode. This analysis omlits all consideration of

~ e



residual flexlbillty of the higher modes of the system,

Since this study is almed particulerly at the supersonic and high
subsonic veloclty regime, aerodynamic lag functions were omitted In all

analyses.




II. ANALYSIS OF AN AIRFRAME REPRESENTED BY TWO RIGID BODY MODES,
ONE ELASTIC MODE, AND THE "RESIDUAL FLEXIBILITY"
OF ALL HIGHER MODES

The "residual flexibiiity® approximation, derived in reference |,
In generalized modal analyses provides a means of including all stiffness
properties of a system In the analyses while the mass Is represented by
the generalized mass of a selected number of lower=frequency normal modes.
Advantages In simplicity of solution of the conventional truncated modal
approach are obtalned when the coordlinate veloclty dependent terms are
omittede The omission of these damping terms In the equations of motion
will be detrimental to the accuracy of the predicted stabliilty boundaries,
but this enalysis will be shown to be useful by providing some Insight

into the stabl ity problems of more complex structures.

The afrframe configuration considered In this anaiysis will be a
general one defined only by the following parameters.
m = the total mass of the system.
r = the radius of gyration of the system (then mra is the
pitching mass moment of Inertia of the alrframe about
118 CoQe)e
r “m = the generallzed mass of the first elastic mode of the
systeme Thus r, Is just a radius of gyration obtalned
by dividing the generallzed mass of the first elastic
mode by the total mass, and taking the square root.

) = the undamped natural frequency of the flrst elastic mode.

= the modal matrix defining the mode shapes at the h (plunge)

coordinates and the 0 (pitch) coordinates of the system




for the r nodes iIncludeds 3 modes are included, the
zero frequency plunge mode (mode 1), the zero frequency

plich mode (mode 2) and the flrst elastic mode (mode 3).

! T
Xhh 1 %on
-—-1-——-— = the flexibility matrix of the complete free system
X X
L Bh 1 66__ when the zero frequency modes are restrained to zero
displacement, partitioned by h and @ coordinates.
F oa | wl
nh | *en
—~—w{——=— | = the "residual flexibllity" matrix. of all elastic modes
oo | o0
_ﬁeh | Xeo__ higher than the first, partitioned by h and @ coordinates,

Thls matrix actually is not needed to define the system
since (from a special case of equation (3.21) of refer-
ence I) it is determined from system parameters |listed

above by the equation

(] L] [l frel[]

where X, . Is the flexibility matrix with the zero fre-

quency modes restrained.

The aerodynamic forces included In this analysis wili be defined by

the following partitioned matrix equation

F |
h 0 i0Q h
LY P S (11-1)

=q
M LO:O ]

where q Is the dynamfc pressure % X% .

The equations of motion of the aeroelastic system can be written by
a process of partitioning equation (I-1). The quantity - o in equation
(I-1) Is replaced by % In equation (II-2), since we look for solutions of
the equations of motion having time dependence of the form eSf, where s

may be complex,
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In order to shorten subsequent matrix equations we shall define an

"acroelastic serodynamic Influence coefflcient matrix" [—Q‘ha as follows

[0he) - {[1] - a [0ng] [xﬂ}-l [2ne] (11-L)

it is well to note that [Oha Is a function of the dynamic pressure
(q) and the number of elastic modes explicitly Included in the analysis

(In this case | mode),

The equations of motlon of equation (II-3) may be further simplifled
by recognizing that the modal column {%l} s the pltching slope deflec~
tions In the riglid plunge mode, Is equal to zero, and that the modal col-
umns {éh'} and {%2} , the plunge deflectlons In the riglid plunge mode
and the pltch slopes In the rigld pitch mode, are equal to {l} , @
colunn of ones, due to normallization, The equations of motlon now may

be written In the form

pr

SRR O ERCMED - 0¥ o o {07}
o=| 0 mrPs?- {“’hz}T q [5119] { '} '{’ha}T e [6h9] {’93}

In an effort to obtaln a solution in terms of parameters for which
englneers are more likely to have intultive judgment than for the general-
lzed modal parameters of equation (1I-5), we will introduce the concepts

of steady-state elastic divergence and short period mode frequencye.

Conventionally the short perlod mode frequency Is the pltching fre-

quency exhibited by the rigld system when aerodynamic forces are included.

| ° ) {*hB}T 9 [6h9] {r} mr 5%+ 0,%) _{,,hs}r 9 [ahe] {%3}

(11-5)

-




For this analyslis we will defline the Maercelastic short period mode
frequency”" (a%*) to be simlilar to the conventional definition except
that the system, instead of being rigid, will include the "residual
flexiblifty" of ail elestlc modes higher then the first., Thls fre-
quency can be obtalned from equation (II-5) by letting 53 be zero,

then assuming harmonic motion.

e () o B

Steady-state elastic divergence 1s conventionally defined for a
supported system as that aeroelastic instabllity which can occur at
zero frequency and Is therefore Independent of the mass of the system,
This simple definition cannot be applied to 2 free system because In
this case:

l. Other potentlial zero-freguency Instabliities exist which

are not aeroelastlic In nature,

2. The mass distribution of a free system must be considered.
The only reasonable definltion for steady-state elastic divergence of
a free system Is avallable through the description of the elasticity
of the str-.cture when restraints are placed on the zero-frequency
normal modes of the system. In this case steady-state divergence can
be defined by the singularity of the matrix {[I] -q [Q"‘":I [’ﬁnn;]}
where q [Qmm] is the matrix of aerodynamic Influence coefficients and
[}mm Is the deflection Influence coefficlent matrix of the structure
when the zero~frequency modes are restrained. ln/fhls analysis elastic

divergence is determined by fthe vanishing of the determinant

(=] - ong [xen]




which may be expanded as follows In the parameter q

[2] = o [ng] [Xen]

where: D| Is the sum of the first symmetric minors of [Qhe] [Xeh]

h
-I-D'q+Daq-.....Dhq (11“7)

(sum of the dlagonal elements),

O, s the sum of the second symmetric minors of E}he][xed .

th symmetric minor of [Qhe] [xeh] .
Then deflnlng the Maercelestic Index" D by

C)h Is the sum of the h

= 2 h
D=Dg=09"%.....D9q (11~8)
from equation (II~7); D wiil equal O when q = 0 and D will equal | when

q is the dynamic pressure at divergence,

Steady=state divergence of the free system cen also be determlned

from equation (II-5) by letting E, =& =s=0. Then

mre2 mee -{Qh5}T ap [6he] {%3} s 0 (11-9)
where 9% Is the dynamic pressure at dlvergence. We now note that the
quantlty | 5 T . 5

;:?u? {éh } q [Qhe] {q’e } (11-10)

exhiblts the same known dependence on q as D; that is both functions:
1. Equal | when q = 0,
2. Equal O when q = the dynamlc pressure at divergence.
3. Are equal to q Qxhe when applied to a system containing
only | elastic degree of freedom, | palr of aerodynamic
coordinates,

It is then postulated that

0" ;:"5;‘2 {“’hB}T a [‘Q'he] {“’95} (12-11)
e e

10




A rigorous proof of equation (Il=il) was not obtalned and its valldlty

witl be tried by exampie problems.

The characteristic equation obtained from the determinant of the

matrix coefficients of equation (II-5) Is

52 [s"‘+ As? + a] -0 (17-12)

where

oot o <Rt - T o 8

- 6T B e B B 6T 5T )

- AT o[ {1

For a configuration where the siope deflections "sensed" by the
aerodynamic representation are all equal in the first elastic mode,*
then the last term in equation (II-12) for the factor B is zero, since
through normalization {1’93} can be made equal to {l} o For the
conflguration considered In Sectlion IV (since only | aerodynamic cell
Is Included) this term Is zero and probably for a rather large range
of confligurations this term has little Importance. Therefore because
this term is of doubtful signlficance and because Its omission greatly

simplifies the results of ‘this analysis It will be assumed that
{1} {‘}"rﬁ}T [6re] {e0° - {2} {“’h}}T (G {17 - © (11-13)

*An example of this configuration s one containing a rigld lifting
surface.




Then by substitution of equations (1I=6), (II-1!) and (IX~13) into

equation (II-12), the characteristic equation can be wrltten

o [sh+ As® + B] = 0, (II-1L)
where
2 *
A-me(l-ﬁ)#mo
2
* 2
B = W, @

In equation (II-tL) with (I - D) =0, 32 will be real and negative
unless A2 -« LB is negative, |f A2 - 4B is negative, then two of the
roots s of equation (II-IL) will have a positive real part. The

system is therefore on the verge of Instability when

A2 = I8,

Then margine! stabiiity 1s given by

-2 (. -\/%) ; (11-15)

£
» oe|o€
*

and since both D and 3‘9- are always continuous functions of the dynamic
]

pressure beginning at the origin, the lowest dynamic pressure which will

satisfy equation (II-15) is given by
*

o -\© (11-16)

(1]
e

Both sides of equation (II-~16) are functions of the dynamic pressure,

The dynamic pressure at flutter is defined as the intersection of these

2 functlons,

The first observation we may make from the results of this analysis

is that a strong relationship does exist between mode interaction, or




flutter resulting from coupling of the first elastlc mode and the rigid

body modes, and elastic divergence, This analysls shows that for free

systems which fit the assumptions made, classlical "elastic divergence® |
will not occur because a flutter instabiilty will always exist at a

velocity lower than that corresponding to divergence.

The second observation we may make from equation (II=16) Is that
when D, the Maercelastic Index", is negative the frequency ratio is
complex and therefore flutter will not occur.e The significance of a
negative D Is that the system Is losing aerodynamic effectiveness (at
a gliven rigid body mode pitch angle, the aercelastic deflections of the
structure reduce the total |1ft force)s This observation provides the
following useful qualltative criteria for the susceptibllity of a given
configuration to mode Interaction:
le |f a system loses aerodynamlc effectiveness as veloclity Is
Increased, then mode interaction will not occur,
2, |f a system increases in eerodynamic effectlveness as velocity
Is Increased, then mode interaction will probably occur; the
system will be unstable at & velocity less than that predicted {
for steady-state dlvergence. At the velocity of instabillty j
the ratio of the uncoupled short perlod mode frequency to the |

first elastic mode frequency will be less than [,

COMPARISON WITH KNOWN SOLUTIONS

A nunber of aircraft were studied on the CEA analog computer in
the course of this project and that reported in reference l. Most
configurations studied exhibited a flutter instability involving the

rigid body modes and the first elastic mode, end in all but one of
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these cases the system tended to diverge at some hlgher speeds One con-
flguration, (configuration 3 of reference 1) a swept wing alrplane, lost
serodynamlic effectiveness as velocity Increaseds This configuration
showed no tendency to flutter even though the short period mode frequency
virtually coincided with the elastic mode frequency. The one configura-
tlan which did not tend to diverge but did exhiblt mode interactlion was
one where finite aerodynamic damping will be shown to be a necessary
parameter for flutter to occur and therefore could not be predicted by

this analysis which ignored all damping terms,

These results In general colncide with the qualitative criteria
drawn from this analysis; however, in most cases fthe aercdynamic damp=
Ing appeared to have a reasonably large effect on the quentitative value

of the flutter speed, precluding accurate prediction by this analysis.

Conflguration lj of reference I, the delta winged alrplane, showed
very rapid varlations in damping at flutter. This phenomenon usually
Indicates that aerodynamic damping terms have Iittle Influence on the
Instability because they do not vary rapldiy with speed or A.C, location.
The criterion of equation (II-16) was applied to conflguration 4 because
damping did not appear to be a controllling parameter in this case. This
criterion was the only one produced In this study which was in a form

applicable to this "plate-iike" structure,

DESCRIPTION OF CONFIGURATION L

The alrcraft used in this comparison [s identicel to configuration
Ly of reference |s The geometry, mass distribution and structural param-

eters are repeated in this report In Figures i through 5. The aero~-

4




dynamic forces were represented as follows:

l+ For the purposes of describing aerodynamic forces, the wing
was divided Into three strips shown In Figure 6, The strips
are assumed to be rigld planes whose deflection Is defined by
the plunge deflections at the 1/l and 3/} chord coordinates
shown In Figure 6, The aserodynamic |ift and moment on each
strip are rigidly beamed to these same I/L and 3/& chord co=
ordinates of the elastlic structure.

2, The aerodynamic center of each strip is located on the mean
chord of the strip and aft of the effective leading edge of
the strip a distance xc (¢ = mean chord length of strip).

x was varled In the study.

3, The serodynamlc I1ft force on a strip Is given by
| z
L--E-PVZSCL (e'v)
a
where

@ = % (z%_- z%) is the plitching slope of the strip

(positive nose up),

z Is the plunge deflection at the A.C. (positive up),
23 and z3 are the plunge deflections at the 1/l
chord and 3/& chord polints of the elastic structure
(positive up),

Thus

*This equation is glven incorrectly In reference |,




Le The aesrodynamic moment about the A.C. Is given by

case

v {positive nose up).

me-gpVPsg
5 The basic flight condition used In the following numerical
study !s described by the parameterss
Veloclty = 1655 mph
AltT tude = 40,000 feet
Dynamic Pressure = q = 11.9 lb./ln.2

Lift Curve Stope = cL = 5,0 per rad.

a
The dynamic pressure Is varied In the numerical study and Is

expressed as fraction of the baslc value given above (qo).

NUMER!CAL COMPARISON

This configuration was simulated on the CEA passive analog computer
in the pro ject reported in reference |y At that time it was observed to
exhibit the following unusual aeroelastic properties:

|, Three distinct flutter Instabilities were observed for various

combinations of dynamic pressure and A.C. location, Two of
these Instabiilties were Identifled as conventional flutter
phenomena Involving the coupling of 2 elastic modes, The third
instabiiity was the result of coupling of elastic modes and
rigld body modes, It is the latter case which will be consider-
ed In this comparison,

2. The system was observed to have a much smaller stabie region

when the system was represented by one elastic mode than when

the higher modes were included In the representation.




3. The stability of the system was sensitive to small variations

in flexibility,

The appiication of equation (II-16) to configuration & Involvaed

two ma jor stepss
*

o
l« The determination of Z;L' for various A.C, locations and
e

values of él « This calculation was accomplished using
o
equations (IY=6), (II-L) and the modal properties of the

system presented In reference I.
2. The calculation of D from equation (II-8) and the flexi~
billty matrix of the system given In reference |,
The results of these calculations are presented graphically in Figures
7 through |1 for values of x of «25, «30, «35, .375 and 4D. Also

Inctuded on Figures 7 through 11 are curves of the dimensionless short

w, —

period mode frequency of the rigid system - and the curve of | =V D
e

when the elasticity of the system Is represented by only the generallz-

ed flexibllity of the flrst elastic mode. The intersection of the latter

two curves defines the dynamic pressure ratio (éL) at marginal stability
o

when the "residual flexibility" of all elastlc modes higher than the

first Is ignoreds The intersection of the upper curves defines the

stability boundary for the system when all flexibility of the system

is included.

The stabliliity boundaries calculated from equation (II-16) are pre-
sented i